Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Irina S. Konovalova, ${ }^{\text {a }}$ Svetlana V. Shishkina, ${ }^{\text {a }}$ O Oleg V. Shishkin, ${ }^{\text {a }}$ Victoria V. Lipson, ${ }^{\text {b }}$ I. G. Gubarevich, ${ }^{\text {b }}$ S. P. Kustova ${ }^{\text {b }}$ and M. A. Boiko ${ }^{\text {b }}$
${ }^{\text {a }}$ STC 'Institute for Single Crystals', National Academy of Sciences of Ukraine, 60 Lenina ave., Kharkiv 61001, Ukraine, and ${ }^{\mathbf{b}}$ V.
Danilevsky Institute of Endocrine Pathology Problems, Ukrainian Academy of Medical Sciences, 10 Artema ave., Kharkiv 61002, Ukraine

Correspondence e-mail:
sveta@xray.isc.kharkov.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.035$
$w R$ factor $=0.094$
Data-to-parameter ratio $=12.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
N-(2-Hydroxyphenyl)- N^{\prime}-phenethylsuccinamide

Molecules of the title compound, $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$, adopt a rodlike shape, probably influenced by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonds, which also determine the formation of polymeric chains along the glide direction.

Comment

β-Phenylethylamide 2-hydroxisuccinanilic acid (phensuccinal) is a novel prospective pharmacological agent which possesses antidiabetogenic effects due to the stimulation of pancreatic β-cell regeneration and to its antioxidant effect in animals with heterogeneous insulin insufficiency (Poltorack et al., 1995). Knowledge of its molecular and crystal structure might be important in order to design other pharmaceutically acceptable forms.

Fig. 1 shows a perspective view of the title molecule, (I). The central amide fragment and the C 11 atom are coplanar within $0.01 \AA$, in spite of the short intramolecular contact $\mathrm{H} 9 B \cdots \mathrm{H} 2 N$ [$2.30 \AA$; sum of van der Waals radii is $2.34 \AA$ (Zefirov \& Zorky, 1995)]. The methylenephenyl substituent at atom C 11 is oriented almost orthogonal to the $\mathrm{C} 10-\mathrm{N} 2$ bond [the $\mathrm{C} 10-\mathrm{N} 2-\mathrm{C} 11-\mathrm{C} 12$ torsion angle is -106.4 (2) ${ }^{\circ}$]. The phenyl substituent adopts an $a p$ conformation relative to the $\mathrm{C} 11-\mathrm{N} 2$ bond [the $\mathrm{N} 2-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$ torsion angle is $\left.175.5(2)^{\circ}\right]$ and is twisted with respect to the $\mathrm{C} 11-\mathrm{C} 12$ bond [the $\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 18$ torsion angle is $46.4(2)^{\circ}$]. Such an orientation of the phenyl ring is caused by the repulsion between the C11 and C12 methylene groups and the atoms of the aromatic ring, as suggested by the short intramolecular contacts $\mathrm{C} 11 \cdots \mathrm{H} 18$ ($2.76 \AA$; sum of van der Waals radii $2.87 \AA$), H11A $\cdot \mathrm{C} 18(2.80 \AA), \mathrm{H} 12 A \cdots \mathrm{H} 14(2.31 \AA$; sum of van der Waals radii $2.34 \AA$), $\mathrm{H} 11 A \cdots \mathrm{H} 18(2.32 \AA)$. The carbonyl groups of the two amide fragments are oriented in opposite directions and are twisted slightly with respect to the $\mathrm{C} 8-\mathrm{C} 9$ bond [the $\mathrm{O} 2-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$ and $\mathrm{O} 3-\mathrm{C} 10-\mathrm{C} 9-\mathrm{C} 8$ torsion angles are -176.0 (1) and 13.4 (2) ${ }^{\circ}$, respectively]. The hydroxyphenyl substituent has an $a p$ orientation relative to the $\mathrm{C} 8-\mathrm{C} 7$ bond and is essentially non-coplanar with respect to the carbamide fragment [the $\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8$ and $\mathrm{C} 7-$

Figure 1
C15
The molecular structure of the title compound. The non-H atoms are shown with displacement ellipsoids drawn at the 50% probability level.
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$ torsion angles are $-174.8(1)$ and $36.6(2)^{\circ}$, respectively]. This is probably caused by the short intramolecular contacts $\mathrm{C} 7 \cdots \mathrm{H} 2(2.85 \AA$; sum of van der Waals radii), O2 \cdots C2 ($2.94 \AA$; sum of van der Waals radii $3.00 \AA$), H1N . O1 ($2.38 \AA$; sum of van der Waals radii $2.45 \AA$).

The molecules of the title compound form polymeric chains along the c - axis direction (Fig. 2) due to the formation of $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonds (Table 2). This, probably, results in an elongation of the $\mathrm{N} 1-$ C 7 and O3-C10 bonds (Table 1) compared with their mean values of 1.334 and $1.210 \AA$ (Bürgi \& Dunitz, 1994), respectively, and the shortening of the $\mathrm{N} 2-\mathrm{C} 10$ and $\mathrm{N} 2-\mathrm{C} 11$ bonds (mean values are 1.334 and $1.469 \AA$, respectively). Finally, there is a short intramolecular contact $\mathrm{H} 1 N \cdots \mathrm{H} 8 B(2.21 \AA$; sum of van der Waals radii $2.34 \AA$). The formation of intermolecular hydrogen bonds is probably a stabilizing factor for the elongated rod-like shape of the molecules.

Experimental

The title compound was prepared according to Patent 36464 A Ukraine (2001). Crystals suitable for X-ray analysis were obtained by crystallization from isopropanol.

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$	$Z=4$
$M_{r}=312.36$	$D_{x}=1.308 \mathrm{Mg} \mathrm{m}^{-3}$
Monoclinic, $P 2^{6} / c$	Mo $K \alpha$ radiation
$a=19.630(4) \AA$	$\mu=0.09 \mathrm{~mm}^{-1}$
$b=5.1128(8) \AA$	$T=293(2) \mathrm{K}$
$c=17.326(4) \AA$	Plate, colourless
$\beta=114.17(2)^{\circ}$	$0.30 \times 0.20 \times 0.05 \mathrm{~mm}$

Data collection

Oxford Diffraction Xcalibur-3 diffractometer

ω scans

Absorption correction: none 9600 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.094$
$S=0.98$
2755 reflections
220 parameters

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.094$
$S=0.98$
220 parameters

Figure 2
Partial packing view of the structure, showing the hydrogen-bonded (dashed lines) polymeric chains.

Table 1
Selected bond lengths (\AA).

$\mathrm{N} 1-\mathrm{C} 7$	$1.3435(18)$	$\mathrm{O} 1-\mathrm{C} 6$	$1.3551(17)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.4148(18)$	$\mathrm{O} 2-\mathrm{C} 7$	$1.2246(15)$
$\mathrm{N} 2-\mathrm{C} 10$	$1.3224(19)$	O3-C10	$1.2428(16)$
$\mathrm{N} 2-\mathrm{C} 11$	$1.4495(19)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.498(2)$

Table 2
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 N \cdots \mathrm{O}^{\mathrm{i}}$	$0.816(15)$	$2.224(15)$	$2.9615(17)$	$150.6(13)$
$\mathrm{O} 1-\mathrm{H} 1 O \cdots 3^{\text {ii }}$	$0.84(2)$	$1.88(2)$	$2.6648(15)$	$156(2)$
$\mathrm{N} 2-\mathrm{H} 2 N \cdots \mathrm{O}^{\text {iii }}$	$0.836(16)$	$2.094(17)$	$2.9254(18)$	$173.0(15)$
Symmetry codes:	(i) $-x+1, y-\frac{1}{2},-z+\frac{3}{2} ;$	(ii)	$-x+1, y-\frac{3}{2},-z+\frac{3}{2} ; \quad$ (iii)	
$-x+1,-y+1,-z+1$.				

H atoms involved in hydrogen bonding were located in difference maps and refined with isotropic displacement factors [final $\mathrm{N}-\mathrm{H}=$ 0.816 (15) and $0.836(16) \AA$, and $\mathrm{O}-\mathrm{H}=0.84$ (2) \AA]; those attached to carbon were positioned geometrically ($\mathrm{C}-\mathrm{H}=0.93$ or $0.97 \AA$) and allowed to ride, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve and refine structure: SHELXTL (Sheldrick, 1998); molecular graphics: XP (Siemens, 1998); software used to prepare material for publication: SHELXTL.

References

Bürgi, H.-B. \& Dunitz, J. D. (1994). Structure Correlation, Vol. 2, pp. 767-784. Weinheim: VCH.
Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Versions 1.171.29.9. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.

Patent 36464A Ukraine (2001). MPK 7 C 07 C 235/74 No 99126984 Publ. 16.04., Bul. No 3, p. 1.98.

Poltorack, V., Natarov, V. \& Gorbenko, N. (1995). Diabetologia, 38, suppl. 1, p. 97.

Sheldrick, G. M. (1998). SHELXTL-Plus. PC Version 5.1. University of Göttingen, Germany.
Siemens (1998). XP. Siemens Analytical X-ray Division Inc., Karlsruhe, Germany.
Zefirov, Yu. V. \& Zorky, P. M. (1995). Usp. Khim. 64, 446-460. (In Russian.)

[^0]: (C) 2006 International Union of Crystallography All rights reserved

